

Our Vision for a Clean Planet by 2050

- The Paris Agreement objective is to keep temperature increase to well below 2°C and to pursue efforts to limit it to 1.5°C
- But the IPCC report confirms that limiting climate change to 1.5°C has to be pursued to avoid these worst impacts
- For the EU to lead the world in climate action, it means achieving net-zero greenhouse gas emissions by 2050
- The EU with this vision can inform others how we can deliver collectively a clean planet.
- The Long Term Strategy shows transforming our economy is possible and beneficial.

Our Vision for a Clean Planet by 2050

Emissions pathway to net zero GHG

European Commission

4

Macro-economic impacts: aggregate level

Diverse set of models converge on broad economic impacts:

- Net GHG neutrality can be achieved with limited impact on aggregate output by 2050;
- Impact on output could be slightly positive (+2.2%) at best and slightly negative at worst (-1.3%);
- This is to put in context of an economy growing by close to 70% between 2015 and 2050 under the baseline.

GDP vs. Baseline, 2050	Fragmen	mented action Global action		
Temperature target	2°C	1.5°C	2°C	1.5°C
EU action	-80%	Net GHG neutrality	-80%	Net GHG neutrality
Global action	NDC	NDC	-46%	-72%
JRC-GEM-E3	-0.13%	-0.63%	-0.28%	-1.30%
ЕЗМЕ	1.26%	1.48%	1.57%	2.19%
QUEST	0.31%	0.68%		

Source: JRC-GEM-E3, E3ME and DG ECFIN.

Detailed assessment supported by scenario analysis

	Electrification (ELEC)	Hydrogen (H2)	Power-to-X (P2X)	Energy Efficiency (EE)	Circular Economy (CIRC)	Combination (COMBO)	1.5°C Technical (1.5TECH)	1.5°C Sustainable Lifestyles (1.5LIFE)	
Main Drivers	Electrification in all sectors	Hydrogen in industry, transport and buildings	E-fuels in industry, transport and buildings	Pursuing deep energy efficiency in all sectors	Increased resource and material efficiency	Cost-efficient combination of options from 2°C scenarios	Based on COMBO with more BECCS, CCS	Based on COMBO and CIRC with lifestyle changes	
GHG target in 2050	-80% GHG (excluding sinks) ["well below 2°C" ambition]					-90% GHG (incl. sinks)	-100% GHG ["1.5°C"	(incl. sinks) ambition]	
Major Common Assumptions	 Higher energy efficiency post 2030 Deployment of sustainable, advanced biofuels BECCS provide a substainable advanced biofuels Moderate circular economy measures Digitilisation Significant 					rdination for infrastructure deployment ent only post-2050 in 2°C scenarios earning by doing for low carbon technologies improvements in the efficiency of the transport system.			
Power sector	Power is nearly decarbonised by 2050. Strong penetration of RES facilitated by system optimization (demand-side response, storage, interconnections, role of prosumers). Nuclear still plays a role in the power sector and CCS deployment faces limitations.								
Industry	Electrification of processes	Use of H2 in targeted applications	Use of e-gas in targeted applications	Reducing energy demand via Energy Efficiency	Higher recycling rates, material substitution, circular measures	Combination of most Cost- efficient options from "well below 2°C" scenarios with targeted application (excluding CIRC)	COMBO but stronger	CIRC+COMBO but stronger	
Buildings	Increased deployment of heat pumps	Deployment of H2 for heating	Deployment of e-gas for heating	Increased renovation rates and depth	Sustainable buildings			CIRC+COMBO but stronger	
Transport sector	Faster electrification for all transport modes	H2 deployment for HDVs and some for LDVs	E-fuels deployment for all modes	Increased modal shift	Mobility as a service			 CIRC+COMBO but stronger Alternatives to air travel 	
Other Drivers		H2 in gas distribution grid	E-gas in gas distribution grid				Limited enhancement natural sink	 Dietary changes Enhancement natural sink 	

Long Term Strategy Options

7 Building Blocks (1)

- 1. Energy efficiency
 - Energy consumption can be reduced by as much as half in 2050 compared to 2005
 - Buildings are key: most of the housing stock of 2050 already exists today. High renovations rates and fuel switching are needed.
 - Requires adequate financial instruments and skilled workforce, integrated policy approach and consumer engagement.
- 2. Deployments of renewables
 - The share of electricity in final energy demand will at least double.
 - RES-E allows the production of carbon-free energy carriers (hydrogen, efuels) to decarbonize heating, transport and industry.
 - RES-E are increasingly competitive, mainly wind and solar.
 - Deployment facilitated by rising storage capacity and technological options.

7 Building Blocks (2)

- 3. Clean, safe & connected mobility
 - Electric cars, carbon-free power, connectivity and autonomous driving offer prospects to decarbonise personal transport.
 - Innovative mobility for urban areas and smart cities, underpinned by changing behaviour, leading to improvement of quality of life.
 - Alternative fuels (advanced biofuels, e-fuels, hydrogen) will be critical for heavy duty or long distance transport modes.
- 4. Competitive industry and circular economy
 - Competitive resource-efficient industry and circular economy, increased recovery and recycling of raw materials (including critical materials), new materials and business concepts.
 - Completed by fuel and feedstock substitution: electrification, hydrogen, biomass, renewable synthetic gas. CCS where still needed
 - In the next 10 to 15 years, technologies that are already known will need to demonstrate that they can work at scale.

7 Building Blocks (3)

- 5. Infrastructure and interconnections
 - Interconnected smart infrastructure for sectoral integration.
 - Completion of the Trans-European Energy and Transport Networks.
 - Smart electricity and data/information grids, hydrogen pipelines.
 - Smart charging or refuelling stations for transport. Increased synergy between transport and energy systems.
- 6. Bio-economy and natural carbon sinks
 - Agriculture to provide food, feed and fibre, but also reduce emissions.
 - Biomass is multipurpose: heat, biogas, biofuels, alternative to carbon intensive materials and generate negative emissions when coupled with carbon capture and storage.
 - Natural carbon sink can be enhanced through afforestation and restoration of degraded forest lands and other ecosystems.

7 Building Blocks (4)

- 7. Carbon capture and storage
 - Rapid deployment of renewable energy and new options to decarbonize industry reduced the need for CCS.
 - To achieve net-zero greenhouse gas emissions, CCS still required for certain energy-intensive industries and eventually to generate negative emissions.
 - CCS today is facing barriers: lack of demonstration plant and proof of economic viability, regulatory barriers in some MS, public acceptance.
 - Coordinated action needed on demonstration and commercial facilities to overcome the obstacles.

Increased Investment in the EU economy

- Modernising and decarbonising the EU's economy will stimulate significant additional investment
- From 2% of EU GDP invested in the energy system today to 2.8% (up to € 575 bn per annum) to achieve a net-zero greenhouse gas emissions economy
- Positive for growth and jobs, with GDP higher by up to 2% in 2050
- Co-benefits: energy imports down, public health, etc.

Investments needs by sector (1.5°C)

- Investment builds up significantly to 2030 already in most sectors and peaks around 2040
- All LTS scenarios share a common path to 2030, based on recently adopted and proposed legislation
- Investment needs will be particularly large in the residential sector (energy efficiency) and the power sector (generation and grid)
- Investment needs will be large in transport, though a significant share is the replacement of vehicles

Average annual investment, 2021-2030 and average of 1.5°C scenarios 2031-2050 (billion EUR 2013)

	2021-2030	2031-2050
Supply	<u>115.0</u>	<u>223.5</u>
Power grid	59.2	96.6
Power plants	53.9	107.1
Boilers	1.7	0.7
New carriers	0.1	19.2
Demand excl. transport	<u>281.0</u>	<u>324.0</u>
Industry	18.1	25.2
Residential	198.9	226.8
Tertiary	64.3	71.9
Transport	<u>685.0</u>	<u>875.5</u>
TOTAL	1081.0	1423.0
TOTAL excl. transport	396.0	547.5

Enabling framework crucial to deliver transformation

Taxation

Ensuring an effective pricing of externalities and a fair distribution of transition costs

Energy Union and Climate Action

Making the commercial rules fit for the deployment of new technologies in energy, building and mobility

EU Budget and Sustainable Finance

Preparing the rollout of key infrastructure and incentivising investments in sustainable business models

Local Action

Accompanying the transformation of regions and economic sectors

Research and Innovation

Identifying key technologies for the transition and accelerating demonstration

Industrial Strategy and Circular Economy

Roll out of technologies, strategic value chains and increased circularity

Free but Fair Trade

Working towards a global level playing field for competitiveness

The Social Pillar

Empowering citizens with skills for new business models

Digital Single Market

Creating the digital "operating system" to enable system integration and new business models

Competition Policy and State Aid

Ensure coherence with EU climate and environment goals

Current 2030 targets and implications from a carbon budget perspective

- EU Council decision of 2014:
 - ✓ "At least 40% reduction" target by 2030 (compared to 1990);
 - ✓ -43% in ETS and -30% in non-ETS (vs. 2005), based on cost efficiency;
 - $\checkmark~$ 27% RES share and 27% energy efficiency gains.
- EU climate policy/commitments are not based on carbon budgets.
- But the 2030 targets still define a trajectory:
 - ✓ Annual allocations under the ESR (linear trajectories);
 - ✓ National targets under the ESR are based on GDP per capita (fairness);
 - ✓ Adjustment for high-income MS and enhanced flexibilities (banking, borrowing, trading, LULUCF, ETS) encourage cost-effectiveness;
 - ✓ ETS linear reduction factor increased from 1.74% to 2.2% in 2021-2030;
 - ✓ Adopted RES and EE target: 32% share and 32.5% EE gain.
- Full implementation of 2030 package would generate 45% reduction in GHG emissions.

Sectoral trajectories

No carbon budgets are defined explicitly beyond ETS/non-ETS.

End-points (2050) differ by sector.

Pace/timing of reductions differ.

Key determinants 2030:

- ✓ MAC curves and technological progress (learning by doing);
- ✓ Full modelling of EU-ETS;
- ✓ Energy efficiency values;
- ✓ RES values;
- ✓ RES target (32%);
- ✓ EE target (32.5%).

President-elect von der Leyen Political Guidelines: a European Green Deal

- Make the EU the first climate neutral continent and enshrine the 2050 objective in a Climate Law.
- Extension of the ETS system.
- Put forward a comprehensive plan to increase ambition for 2030 to 50% and up to 55% in a responsible way, following social, economic and environmental impact assessments.
- A carbon border tax to avoid carbon leakage.
- Just Transition fund.
- Strategy for green financing and Sustainable Europe Investment Plan.
- European Climate Pact.

Thank you